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Rotational structure from ab initio nuclear theory?
Ab initio theory should be able to describe nuclei
Light nuclei display rotational band structure

∴ Ab initio theory should be able to predict rotational bands

But... Convergence challenges in calculation of relevant observables
– Qualitative emergence of rotational “features”?

Rotational energies, rotational transition patterns
– Robust quantititative prediction of rotational observables?

Rotational energy parameters, intrinsic E2 matrix elements
– Physical nature of rotation in light nuclei — What can we learn?

M. A. Caprio, P. J. Fasano, P. Maris, A. E. McCoy, J. P. Vary, EPJA Topical Issue, arXiv:1912.00083.
M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, J. P. Vary, Bulg. J. Phys. (SDANCA19), arXiv:1912.06082.

Rapid convergence with Daejeon16 interaction
A. M. Shirokov and I. J. Shin and Y. Kim and M. Sosonkina and P. Maris and J. P. Vary, Phys. Lett. B 761, 87 (2016).

Shape coexistence and quadrupole shape invariants 10Be & 10C
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Separation of rotational degree of freedom
Intrinsic state |φK〉 & rotation in Euler angles ϑ (J = K,K +1, . . .)

|ψJKM〉 ∝

∫
dϑ

[
DJ

MK(ϑ)|φK ;ϑ〉 + (−)J+KDJ
M−K(ϑ)|φK̄ ;ϑ〉

]
Rotational energy

E(J) = E0+A
[
J(J+1)+a(−)J+1/2(J+ 1

2 )︸              ︷︷              ︸
Coriolis (K = 1/2)

]
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2J

Rotational relations on electromagnetic transitions (E2, M1, . . . )
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Rotational features emerge in ab initio calculations
P. Maris, M. A. Caprio, and J. P. Vary, Phys. Rev. C 91, 014310 (2015).
C. W. Johnson, Phys. Rev. C 91, 034313 (2015).

Valence shell structure?
Multishell dynamics?

Elliott SU(3), Sp(3,R)?
T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013).

Cluster rotation?
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Yrast and excited bands in 10Be
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RESONANT α SCATTERING OF 6He: LIMITS . . . PHYSICAL REVIEW C 87, 054301 (2013)

resonance strength exists in the energy region covered in the
present study. There is a minor peak structure at 2.5 MeV. It
is difficult to judge whether this is due to a resonance or to a
statistical fluctuation, particularly without the corresponding
information from an angular distribution. In the former case,
it would be possible that it originates from the 10.15-MeV 4+
state with nearly the same resonance energy. A fit with a Voigt
function [50] was made to estimate the possible partial width

8Be. Three different backgrounds, namely linear, quadratic,
and exponential functions, were tested. The resonance energy
was set to the result from the elastic channel (2.56 MeV) and
varied within the error (0.15 MeV), while the experimental
resolution was fixed to 0.25 MeV rms, which arises from
the uncertainty in reaction energy (0.1 MeV) and that in
vertex determination (0.2 MeV). The resulting 
8Be/
 value
is 0.09(5) and this gives an upper limit of 
8Be/
 ∼ 0.15 for
this possible decay branch.

V. DISCUSSION

The present study identified a 4+ state with a large α
decay width 
α/
 = 0.49(5) at 9.98(15) MeV in 10Be. The
observed state most likely corresponds to the known 4+ level
at 10.15(2) MeV [31,32] given the observed excitation energy
and spin-parity. In previous studies [24,32,33], this state is
considered the 4+ member of a rotational band built on the
second 0+ state at 6.1793(7) MeV [51]. The excitation energies
of 10Be states are plotted against J (J + 1) in Fig. 11. The
linear extrapolation from the 0+

2 state and the 2+ state at
7.542(1) MeV [51] indeed nicely agrees with the 10.15-MeV
state in energy. The large moment of inertia from the narrow
level spacing of the band members is well explained by the
σ -type molecular orbital structure from both cluster-model
calculations [16,21,22] and microscopic calculations based
on the antisymmetric molecular dynamics (AMD) method
[15,24]. In this picture, the valence neutrons are delocalized
over the two clusterized α cores and the extension along the
α cores’ axis gives strong deformative characteristics to 10Be.
The large decay width for α emission indicates a high degree of
clusterization in this 4+ state and supports this type of cluster
structure. An α spectroscopic factor of 3.1(2) is estimated in a
recent analysis of the measured partial width [61]. This value
is as large as the spectroscopic factors of about 1.5 for the
ground-state band members of 8Be with well-developed two
α clusters [61,62].

In addition to the 0+
2 state, theoretical studies [15,16,22,24]

predict a π -type cluster structure for the 0+ ground state, in
which valence neutrons are extending perpendicular to the
axis of the two α cores. Given the 2+ state at 3.37 MeV, the
4+ state of the 0+

g.s. band is anticipated at around 11 MeV as
seen in the linear extrapolation shown in Fig. 11. In previous
studies [24,33], the 4+ state at 11.76(2) MeV is considered
the most likely candidate for the 4+ member of the 0+

g.s. band
because of its excitation energy and spin-parity. In the present
study, however, there was no resonance observed around Ex =
11.8 MeV (Ec.m. = 4.4 MeV). This is in stark contrast with
the significant resonance strength of the 4+ state of the 0+

2
band at 10.2 MeV. The α decay width of the 11.8-MeV
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FIG. 11. (Color online) Plot of Ex vs J (J + 1) for 10Be. The
band members of the ground and the second 0+ states are shown by
the circles and squares, respectively. The linear extrapolation using
the 0+ and 2+ states is shown for each band. The horizontal lines
at J = 4 denote predicted level energies of the 4+ member of the
ground state band from the β-γ constraint AMD method [24] (solid
line), the variational AMD method [15] (dashed line), the four-body
cluster model [21] (dotted line), the molecular orbital model [16]
(dot-dashed line), the semimicroscopic algebraic cluster model [18],
(double-dot-dashed line), and the multicluster generator coordinate
method [19] (triple-dot-dashed line). The data of Refs. [16,21] were
obtained from the calculated values with respect to the threshold
energy of 2α + 2n at 8.386 MeV. The shaded area denotes the
energy domain covered by the present study.

state is estimated less than 20 keV and is much smaller than

α = 145(15) keV deduced for the 10.2-MeV state. Such
a difference is unexpected as both 4+ states belong to the
rotational bands of the clusterized 0+ states. Nearly the same
spectroscopic amplitudes of 6He + α are predicted for these
4+ states in the microscopic 2α + 2n four-cluster model [21].
The present result does not agree with this prediction. The
small spectroscopic amplitude of the 4+ member is also unlike
the ground state 0+ band of 8Be, despite what appears to
be a similar moment of inertia. The α spectroscopic factors
are predicted to be equally large in all 0+, 2+, and 4+ states
in 8Be [62], which is supported by the folding potential model
that well describes the level energies and widths of these
states [63].

There are two possible scenarios to account for the hindered
strength of the 4+ member of the 0+

g.s. band. First is the
possibility that the 4+ state at 11.8 MeV does not belong
to the 0+

g.s. band, and the real band member exists outside the
energy window of the present study (Ec.m. = 2–6 MeV or
Ex = 9.4–13.4 MeV). This scenario implies an unusual level
spacing for the ground state band. On the contrary, regardless
of the framework, most theoretical studies [15,16,18,19,21,24]
predict the 4+ state of the 0+

g.s. band in the energy range
Ex = 10–13 MeV (Fig. 11), the region anticipated from the
proportionality to J (J + 1). The second scenario is that the

054301-11

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).

Extrapolation: Exponential in Nmax (3-point); see
P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C
79, 014308 (2009).



M. A. Caprio, University of Notre Dame

Yrast and excited bands in 10BeRESONANT α SCATTERING OF 6He: LIMITS . . . PHYSICAL REVIEW C 87, 054301 (2013)

resonance strength exists in the energy region covered in the
present study. There is a minor peak structure at 2.5 MeV. It
is difficult to judge whether this is due to a resonance or to a
statistical fluctuation, particularly without the corresponding
information from an angular distribution. In the former case,
it would be possible that it originates from the 10.15-MeV 4+
state with nearly the same resonance energy. A fit with a Voigt
function [50] was made to estimate the possible partial width

8Be. Three different backgrounds, namely linear, quadratic,
and exponential functions, were tested. The resonance energy
was set to the result from the elastic channel (2.56 MeV) and
varied within the error (0.15 MeV), while the experimental
resolution was fixed to 0.25 MeV rms, which arises from
the uncertainty in reaction energy (0.1 MeV) and that in
vertex determination (0.2 MeV). The resulting 
8Be/
 value
is 0.09(5) and this gives an upper limit of 
8Be/
 ∼ 0.15 for
this possible decay branch.

V. DISCUSSION

The present study identified a 4+ state with a large α
decay width 
α/
 = 0.49(5) at 9.98(15) MeV in 10Be. The
observed state most likely corresponds to the known 4+ level
at 10.15(2) MeV [31,32] given the observed excitation energy
and spin-parity. In previous studies [24,32,33], this state is
considered the 4+ member of a rotational band built on the
second 0+ state at 6.1793(7) MeV [51]. The excitation energies
of 10Be states are plotted against J (J + 1) in Fig. 11. The
linear extrapolation from the 0+

2 state and the 2+ state at
7.542(1) MeV [51] indeed nicely agrees with the 10.15-MeV
state in energy. The large moment of inertia from the narrow
level spacing of the band members is well explained by the
σ -type molecular orbital structure from both cluster-model
calculations [16,21,22] and microscopic calculations based
on the antisymmetric molecular dynamics (AMD) method
[15,24]. In this picture, the valence neutrons are delocalized
over the two clusterized α cores and the extension along the
α cores’ axis gives strong deformative characteristics to 10Be.
The large decay width for α emission indicates a high degree of
clusterization in this 4+ state and supports this type of cluster
structure. An α spectroscopic factor of 3.1(2) is estimated in a
recent analysis of the measured partial width [61]. This value
is as large as the spectroscopic factors of about 1.5 for the
ground-state band members of 8Be with well-developed two
α clusters [61,62].

In addition to the 0+
2 state, theoretical studies [15,16,22,24]

predict a π -type cluster structure for the 0+ ground state, in
which valence neutrons are extending perpendicular to the
axis of the two α cores. Given the 2+ state at 3.37 MeV, the
4+ state of the 0+

g.s. band is anticipated at around 11 MeV as
seen in the linear extrapolation shown in Fig. 11. In previous
studies [24,33], the 4+ state at 11.76(2) MeV is considered
the most likely candidate for the 4+ member of the 0+

g.s. band
because of its excitation energy and spin-parity. In the present
study, however, there was no resonance observed around Ex =
11.8 MeV (Ec.m. = 4.4 MeV). This is in stark contrast with
the significant resonance strength of the 4+ state of the 0+

2
band at 10.2 MeV. The α decay width of the 11.8-MeV
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FIG. 11. (Color online) Plot of Ex vs J (J + 1) for 10Be. The
band members of the ground and the second 0+ states are shown by
the circles and squares, respectively. The linear extrapolation using
the 0+ and 2+ states is shown for each band. The horizontal lines
at J = 4 denote predicted level energies of the 4+ member of the
ground state band from the β-γ constraint AMD method [24] (solid
line), the variational AMD method [15] (dashed line), the four-body
cluster model [21] (dotted line), the molecular orbital model [16]
(dot-dashed line), the semimicroscopic algebraic cluster model [18],
(double-dot-dashed line), and the multicluster generator coordinate
method [19] (triple-dot-dashed line). The data of Refs. [16,21] were
obtained from the calculated values with respect to the threshold
energy of 2α + 2n at 8.386 MeV. The shaded area denotes the
energy domain covered by the present study.

state is estimated less than 20 keV and is much smaller than

α = 145(15) keV deduced for the 10.2-MeV state. Such
a difference is unexpected as both 4+ states belong to the
rotational bands of the clusterized 0+ states. Nearly the same
spectroscopic amplitudes of 6He + α are predicted for these
4+ states in the microscopic 2α + 2n four-cluster model [21].
The present result does not agree with this prediction. The
small spectroscopic amplitude of the 4+ member is also unlike
the ground state 0+ band of 8Be, despite what appears to
be a similar moment of inertia. The α spectroscopic factors
are predicted to be equally large in all 0+, 2+, and 4+ states
in 8Be [62], which is supported by the folding potential model
that well describes the level energies and widths of these
states [63].

There are two possible scenarios to account for the hindered
strength of the 4+ member of the 0+

g.s. band. First is the
possibility that the 4+ state at 11.8 MeV does not belong
to the 0+

g.s. band, and the real band member exists outside the
energy window of the present study (Ec.m. = 2–6 MeV or
Ex = 9.4–13.4 MeV). This scenario implies an unusual level
spacing for the ground state band. On the contrary, regardless
of the framework, most theoretical studies [15,16,18,19,21,24]
predict the 4+ state of the 0+

g.s. band in the energy range
Ex = 10–13 MeV (Fig. 11), the region anticipated from the
proportionality to J (J + 1). The second scenario is that the

054301-11

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013). Orbital schematics from
Y. Kanada-En’yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60, 064304 (1999).
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Yrast and excited bands of 10Be from AMD
Antisymmetrized molecular dynamics (AMD)

PTEP 2012, 01A202 Y. Kanada-En’yo et al.
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Fig. 3. (a) Density distributions of the single-particle wave functions for valence neutrons in 10Be(0+
1 ) and

10Be(0+
2 ) [54]. Schematic figure of the molecular orbitals; π and σ orbitals around the 2α core are also shown at

the bottom. (b) Density distribution of the excited band (K π = 0−) in 22Ne obtained by AMD [46]. The middle
and top figures show the density distribution of the single-neutron wave function of the highest single-particle
level. The matter density of the total system is displayed at the bottom of the box.

3.1. Molecular structures in Be and Ne isotopes

The cluster structure of Be isotopes is one of the most fascinating subjects of unstable nuclei. A
2α-cluster core is favored in neutron-rich Be isotopes as well as 8Be whose ground state is a 2α
resonance state. The low-lying states of neutron-rich Be isotopes are described well by a molecular-
orbital picture based on a 2α core and valence neutrons moving around the 2α [33–42]. In contrast
to the molecular-orbital structures in low-lying states, developed di-cluster states such as 6He + 6He
in 12Be have been suggested in highly excited states [9,41,43–45]. There, valence neutrons move
not around the whole system but around one of two α clusters. This means that a variety of cluster
structures coexist in neutron-rich Be isotopes where valence neutrons play important roles.

The molecular-orbital picture has also been extended to Ne isotopes such as 21Ne and 22Ne based
on an 16O+α-cluster core and valence neutrons in molecular orbitals [9,36,37,46]. Di-cluster states
like 18O+α-cluster states in 22Ne are another attractive subject [9].

3.1.1. Molecular-orbital structure. The idea of the molecular orbitals surrounding a 2α core
was suggested in 9Be with a 2α + n cluster model[47–49] in the 1970s. In the 1980s and 1990s,
molecular-orbital models were applied to neutron-rich Be isotopes and succeeded in describing
rotational bands [33–39].

In a 2α system, molecular orbitals are formed by a linear combination of p orbits around two α
clusters. In neutron-rich Be isotopes, valence neutrons occupy the molecular orbitals around the 2α
core. The negative-parity orbital is called the “π orbital”, while the longitudinal orbital with positive
parity is the “σ orbital” (Fig. 3). Since the σ orbital has two nodes along the α–α direction, it gains
kinetic energy as the 2α cluster develops. The energy gain of the σ orbital in the developed 2α
system results in the intruder configurations of the 11Be and 12Be ground states. In other words, it is
the origin of the breaking of the neutron magic number N = 8 in Be isotopes.

In analogy to neutron-rich Be isotopes, molecular-orbital structures in Ne isotopes have been sug-
gested from experimental systematics [36,37]. Indeed, AMD calculation has predicted the presence
of molecular-orbital bands with an 16O+α-cluster core surrounded by two valence neutrons in the
σ orbital [9,46]. Unlike Be isotopes, the σ orbital is a linear combination of sd orbits around 16O
and p orbits around α, and it results in a pf-shell-like molecular orbital. Another difference is the
parity asymmetry of the core, which produces the parity doublet of the molecular bands. Similar
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Y. Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp. Phys. 2012, 01A202
(2012).



M. A. Caprio, University of Notre Dame

Proton-neutron triaxiality in 10
4Be6 & 10

6C4?
PTEP 2012, 01A202 Y. Kanada-En’yo et al.

10Be

10C
neutron

proton

16C
J =K=0

K=2

Z

Z

(d)

(e) neutron (f) proton

(c) (a) 

(b) 

Fig. 15. Schematic figures for different shapes of proton and neutron densities in (a) 10C, (b) 10Be, and (c)
16C. (d) Surface cut at constant proton and neutron densities of 16C obtained by VBP calculations with AMD.
(e) Prolate neutron density of 16C. (f) Oblate proton density of 16C.
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Fig. 16. Left: The experimental energy levels of the 0+
1 , 2+

1 , and 2+
2 states and Mn/Mp ratios for 2+

1 → 0+
1 and

2+
2 → 0+

1 of 10C and 16C [140,142]. The experimental values for the neutron matrix amplitude (Mn) are deduced
from the corresponding B(E2) values of the mirror nucleus. The values in parentheses are the theoretical values
for Mn/Mp from the AMD calculation [143]. Right: Deformation parameters for the intrinsic wave functions
of 10C and 16C. The filled triangles indicate βp and γp for the proton part and the open circles are βn and γn for
the neutron part.

changes depending on the neutron number, while the proton shape is rather stable and insensi-
tive to the neutron structure. One of the striking features is that the difference between proton
and neutron shapes is suggested in 16C and 10C, in which prolate neutron shapes are favored.
In spite of the prolate neutron structure, the proton structure shows an oblate deformation result-
ing in opposite deformations. The deformation parameters for the proton and neutron densities of
the intrinsic state are (βp, γp) = (0.41, 0.27π) and (βn, γn) = (0.53, 0.00π) for 10C, and they are
(βp, γp) = (0.32, 0.26π) and (βn, γn) = (0.34, 0.00π) for 16C (Figs. 15 and 16). The reason for
the opposite proton and neutron deformations is that a Z = 6 system favors an oblate proton shape
because of the proton shell effect while an N = 10 or N = 4 nucleus shows prolate trends for the
neutron shape due to the neutron shell effect. In other words, the Z = 6 proton structure is not so
much affected by the neutron structure but keeps the oblate tendency.

To discuss the neutron deformation, mirror analysis is useful. In the mirror analysis for 10C and
10Be, the neutron transition matrix Mn for the ground-band transition is evaluated from B(E2) in
10Be by assuming mirror symmetry. The experimental value of the Mn/Mp ratio in 10C deduced by
the mirror analysis is described by the AMD calculation, and it can be understood with the opposite
deformations between proton and neutron densities (Fig. 16). The neutron dominance in the ground-
band transition is more remarkable in 16C as seen in the theoretical results. Unfortunately, there
are no direct data for the E2 strength for the mirror nuclei of 16C; however, as mentioned before,
the observed inelastic scattering cross section implies an enhanced Mn/Mp ratio, indicating neutron
dominance [137]. It is worth mentioning that microscopic coupled-channel calculations with the
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Kimura, and A. Ono,
Prog. Theor. Exp. Phys.
2012, 01A202 (2012).

is prolate with a larger value of the effective deformation
parameterbncosgn50.49 ~Fig. 5!, which makes the second
term in Eq. ~9! less than unity. Thus the ratio is roughly
estimated as

B~E2;10C!

B~E2;10Be!
52.253~0.28/0.49!2;0.75. ~10!

The reason for a smaller theoretical value of the ratio
than the experimental one is considered to be due to the
omission of the third term from the charge radius ratio in Eq.
~9!. Since10C is a nucleus near the proton dripline, effects of
the charge radii are expected to be also significant and
should be taken into consideration as well as the ratio of
deformation parameters. It is to be noted that though the
density tail of the proton is suppressed by the Coulomb bar-
rier, the charge radii may give effects sinceB(E2) is af-
fected by charge radii to the forth power. We think it natural
to consider that the third term in Eq.~9! may become larger
than unity because the charge radius in proton-rich10C can
be expected to be larger than that in10Be. We should point
out that the consideration of the charge radius ratio@the third
term of Eq.~9!# strongly supports our argument that a differ-
ence between proton and neutron shapes should be con-
cluded in 10C in order to explain the observed reduced value
of the ratioB(E2;10C!/B(E2;10Be!.

The theoretical results with AMD calculations are shown
in Table I and are compared with the experimental data. The
calculations underestimate the value ofB(E2;10C!, there-
fore, the ratioB(E2;10C!/B(E2;10Be! is underestimated.
This is probably because the AMD wave function does not
describe the precise behavior of long tails of valence nucle-
ons as mentioned in our previous paper@2# regarding halo
structures of neutron-rich nuclei. A detailed analysis of the
wave functions for valence protons is required.

In the above arguments we analyzed quadrupole moments
of the protons and the neutrons in the ground state of10C

by investigating deformation parametersb andg. We ana-
lyze below quadrupole moments from another viewpoint
by studying the angular momentum components of pro-
tons and neutrons contained in the intrinsic wave function
of the AMD. Roughly speaking the AMD tells us that
the 10C nucleus consists of twoa and two valence protons
~Fig. 7!. In order to analyze this AMD wave function we
consider the shell model limit of the AMD wave function
which is constructed by making thea-a anda-p distances
small. In this shell model limit, the intrinsic state is roughly
represented by a simple configuration with four neutrons in
~0,0,0! 2~0,0,1! 2 and six protons in~0,0,0! 2~0,0,1! 2~0,1,0! 2

in terms of harmonic-oscillator orbits (nx ,ny ,nz), where we
choose thez axis as the axis with the minimum moment of
inertia and thex axis as the axis with the maximum moment
of inertia. It is to be noted that since the intrinsic spins of a
pair of two nucleons in the same orbit almost couple off to
the singlet 0, only the orbital angular momenta of the four
protons and two neutrons in the outer major shell should be
taken into consideration in the discussion ofQ moments.
The lowest state with spinJ52 in 10C is found to be a state
uJK&5u2,0& projected on a total angular momentum eigen-

TABLE I. Electric quadrupole moments and transitions of proton-rich C isotopes and the mirror nuclei.
Calculations are with MV1 force (m50.576) and the experimental data are taken from@8#.

ElectricQ moments
Nucleus Level exp. theory

11C 3/22 34.3emb 20emb
11B 3/22 40.7~3! emb 34emb

10C 21 238 emb
10Be 21 265 emb

9C 3/22 228 emb
9Li 3/22 227.8emb 227 emb

E2 transition strength
nucleus level exp. theory

11C 5/22→3/22 6.8 e2 fm4

11B 5/22→3/22 13.9~3.4! e2 fm4 11.3e2 fm4

10C 21→01 12.3~2.0! e2 fm4 5.3 e2 fm4

10Be 21→01 10.5~1.0! e2 fm4 9.5 e2 fm4

9C 1/22→3/22 5.7 e2 fm4

9Li 1/22→3/22 7.2 e2 fm4

FIG. 7. A schematic figure for the intrinsic structure of10C
calculated with AMD. 10C approximately consists of 2a sur-
rounded by 2p in a ~0,1,0! orbit.
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Y. Kanada-En’yo and H.
Horiuchi, Phys. Rev. C
55, 2860 (1997).

Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys.
Suppl. 142, 205 (2001).

Therefore, we construct the state 22
1 by choosing (J6,K8) of

PMK8
J6 FAMD as (J6,K8)5(21,12) under the constraint on

the principalz axis which keeps the approximate orthogonal-
ity to the lowest 21 state with (J6,K8)5(21,0). The third
23

1 state is easily conjectured to be a 21 state in the second
Kp502

1 band, like the 02
1 state. We obtain the 23

1 state by
VAP for F(Z) in Eq. ~10! with (J6,K8,n)5(21,0,2) in the
same way as the 02

1 state, under the constraint on the prin-
cipal z axis mentioned above. It means that the orthogonal
condition to 21

1 is kept by superposing two wave functions
as described in Sec. II D, while the orthogonality to
22

1 (Kp521) is taken into account by choosing differentK
quantumK850.

The binding energy obtained with case~1! interactions is
61.1 MeV, and the one with case~2! is 61.3 MeV. The ex-
citation energies of the results are displayed in Fig. 1. By
diagonalization of the Hamiltonian matrix the excited states
42

1 , 61 are found in the rotational band theKp502
1 and the

52 state is seen in theKp512 band. Comparing with the
experimental data, the level structure is well reproduced by
theory. Although it is difficult to estimate the width of reso-
nance within the present framework, the theoretical results
suggest the existence of 31, 41, 61, and 52 states which
are not experimentally identified yet. The excited levels can
be roughly classified as the rotational bandsKp501

1 , 21,
02

1 , and 12 which consist of (01
1 , 21

1 , 41
1), (22

1 , 31
1),

(02
1 , 23

1 , 42
1 , 61

1), and (12, 22, 32, 42, 52), respec-
tively. The intrinsic structures of these rotational bands are

discussed in detail in the next section.
The data of the transition strength are of great help to

investigate the structures of the excited states. The results
with the interaction case~1! and the experimental data ofE2
andE1 transition strength are presented in Table I. The the-
oretical values agree well with the experimental data. The
strengthB(E2) for 10C;21

1→01
1 is simply calculated by the

wave function of10C supposed to be mirror symmetric with
10Be. The present result for theE2 strength of 10C;21

1

→01
1 is better than the work with simple AMD calculations

@19# mainly due to the superposition of many wave functions
by diagonalization. As the values with a shell model, (0
12)\v shell-model calculations with effective chargesep

51.05e,en50.05e from Ref. @10# are also listed. Also the
shell-model calculations reproduce the experimental data of
the E2 properties of low-lying levels.

The strength of theb decays of Gamow-Teller~GT!-type
transitions can be deduced from the cross sections at the 0°
forward angle of the charge exchange reactions which have
been measured recently@7#. These new data for the Gamow-
Teller-typeb transitions are very useful probes to discuss the
structures of the excited states of unstable nuclei. Table II
shows the values ofB(GT). The experimental values for the
b transitions from10B(31) to 10Be* are deduced from the
data of the reaction10B(t,3He)10Be. As for the theoretical
values, the wave functions for the neighbor nucleus10B are
calculated with VAP where (J6,K8) are chosen to be (31,
23) for the ground 31

1 state and (11,21) for the 11
1 state.

10Be and 10B are calculated with case~1! and ~2! interac-
tions. The theoretical values reasonably match the experi-
mental data. Since the data for10B(31)→10Be(9.4 MeV)
correspond well to the theoretical value of10B(31)
→10Be(31

1), it is natural to consider the excited level of
10Be at 9.4 MeV as the 31

1 state. The strength of these GT
transitions from10B(31) is governed by the configuration of
the ground state of10B which is understood as the state 31

with uKu53 in thep shell in the simple shell-model limit. It
is natural that the transitions to 22

1 and 31
1 states in theKp

521 bands of 10Be are strong while the transitions to the
states in theKp501 bands are weaker. The strength is not
so sensitive to the interactions except for the decay
10B(31)→10Be(21

1). The results of the GT transition
10B(31)→10Be(21

1) with case~1! and case~2! interactions
underestimate the experimental data. It is because theK52
component hardly mixes in the 21

1 state of 10Be in the case

FIG. 1. Excitation energies of the levels in10Be. Theoretical
results are calculated by the diagonalization of the states obtained
with VAP by using the interaction case~1!.

TABLE I. E2 andE1 transition strength. The theoretical results of AMD with the interaction case~1! are
compared with the experimental data@20#. The shell model calculations are quoted from the work with the
(012)\v shell model in Ref.@10#.

Transitions Mult. Expt. Present AMD Shell model

10Be;21
1→01

1 E2 10.561.1 ~e fm2) 11 ~e fm2) 16.26~e fm2)
10Be; 02

1→21
1 E2 3.362.0 ~e fm2) 0.6 ~e fm2) 7.20 ~e fm2)

10Be; 02
1→11

2 E1 1.360.631022 ~e fm! 0.631022~e fm!

10C;21
1→01

1 E2 12.362.0 ~e fm2) 9 ~e fm2) 15.22~e fm2)

STRUCTURE OF EXCITED STATES OF10Be STUDIED . . . PHYSICAL REVIEW C 60 064304

064304-5

Y. Kanada-En’yo, H. Horiuchi, and
A. Doté, Phys. Rev. C 60, 064304
(1999).
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Triaxial SU∗
πν(3) structure in the IBM-2

A. E. L. Dieperink and R. Bijker, Phys. Lett. B 116, 77 (1982).

A proton fluid with prolate deformation and a neutron fluid with oblate
deformation, coupled with symmetry axes orthogonal to each other,
yield a composite shape with overall triaxial deformation.

Energies follow usual SU(3) relation

E(λ ,μ,L) = aC2(λ ,μ)+bL(L+1),

but representations present are different from those for SUπν(3) axial
rotor. Even the ground state representation contains
multiple degenerate K bands (⇒ 2+1 and 2+2
degenerate).

M. A. Caprio, CTP, Yale University



Prospective regions for SU∗
πν(3) triaxial structure
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Nuclear quadrupole deformation

R(θ ,ϕ) = R0

[
1+∑

M
α2MY2M(θ ,ϕ)+ · · ·

]

β – Overall deformation
γ – Prolate/triaxial/oblate
θ1, θ2, θ3 – Euler angles

b0

0é 30é 60ég

α2M = β cosγ D
(2)
0,M(Ω)+

1√
2

β sinγ
[
D

(2)
2,M(Ω)+D

(2)
−2,M(Ω)

]

Ω ≡ (θ1,θ2,θ3)

M. A. Caprio, University of Notre Dame



M. A. Caprio, University of Notre Dame
R. F. Casten, Nuclear Structure from a Simple Perspective, 2ed. (Oxford, 2000).
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No-core configuration interaction (NCCI) approach
P. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000).

– Begin with orthonormal single-particle basis: 3-dim harmonic oscillator
– Construct many-body basis from product states (Slater determinants)
– Basis state described by distribution of nucleons over oscillator shells
– Basis must be truncated: Nmax truncation by oscillator excitations
– Results depend on truncation Nmax

— and oscillator length (or ~ω)

Convergence towards exact result with increasing Nmax

Ntot =
∑

i Ni = N0+Nex

Nex ≤ Nmax N = 2n+ l



M. A. Caprio, University of Notre Dame

Convergence of NCCI calculations
Results for calculation in finite space depend upon:

– Many-body truncation Nmax

– Single-particle basis scale: oscillator length b (or ~ω)

b =
(~c)

[(mNc2)(~ω)]1/2

Convergence of calculated results (with respect to basis truncation) is
signaled by independence of these parameters
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9Be (P=-)
Daejeon16 ℏω=15MeV
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10Be (P=+)
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M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, J. P. Vary, Bulg. J. Phys. (SDANCA19),
arXiv:1912.06082.
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 The SU∗
πν(3) dynamical symmetry:

Levels and quadrupole transitions

01
+

21
+ 22

+

31
+

41
+

42
+ 43

+

51
+

52
+

61
+

62
+

63
+ 64

+

02
+

03
+

23
+

24
+

25
+ 26

+

SU∗
πν(3) perturbed with Majorana operator for degeneracy breaking.

(Nπ ,Nν) = (5,5)

M. A. Caprio, CTP, Yale University
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Quadrupole shape invariants (Q-invariants)
Quadrupole tensor in rotational intrinsic frame

Q2µ =
∑

i

r2
i Y2µ(r̂i)

〈Q2,0〉 = qcosγ 〈Q2,±1〉 = 0 〈Q2,±2〉 =
1√
2
qsinγ

〈Q2 ·Q2〉 = q2 =
√

5 〈(Q2×Q2)00〉

Rotational invariant operators

Q(2) ≡ (Q×Q)00 =

√
1
5 q̄2

Q(3) ≡ (Q×Q×Q)00 = −

√
2
35 q̄3 cos3γ

K. Kumar, Phys. Rev. Lett. 28, 249 (1972).
D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986).
A. Poves, F. Nowacki, Y. Alhassid, arXiv:1906.07542.

Relation to Bohr deformation*

α2µ ≈

( 4π
3AR2

)
Q2µ ⇒ β ≈

( 4π
3AR2

)
q

* To within factors of Ze/A, (16π/5)1/2 , etc. Caveat emptor!
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Quadrupole shape invariants and fluctuations
Rotational invariant operators

Q(2) ≡ (Q×Q)00 =

√
1
5 q̄2

Q(3) ≡ (Q×Q×Q)00 = −

√
2
35 q̄3 cos3γ

Variances of Q-invariants
σ2(Q(2)) = 〈Q(2)Q(2)〉− 〈Q(2)〉2

σ2(Q(3)) = 〈Q(3)Q(3)〉− 〈Q(3)〉2

Fluctuations in shape distribution

σ(q)
q̄
=

1
2
σ(Q(2))
〈Q(2)〉

σ2(cos3γ)

(cos3γ)2
=
σ2(Q(3))
〈Q(3)〉2

+
9
4
σ2(Q(2))
〈Q(2)〉2

−3
〈Q(2)Q(3)〉− 〈Q(3)〉〈Q(2)〉

〈Q(3)〉〈Q(2)〉

A. Poves, F. Nowacki, Y. Alhassid, arXiv:1906.07542.
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Evaluation of Q-invariants
Q-invariants and the center-of-mass degree of freedom

Q(2) ≡ (Q×Q)00 ⇒ (Q′×Q′)00

Q(3) ≡ (Q×Q×Q)00 ⇒ (Q′×Q′×Q′)00
Q2 = Q′2+Qc.m.

2

Q2µ =
∑

i

r2
i Y2µ(r̂i) =

√
15
8π

∑
i

(ri × ri)2µ

⇒Q′2µ =
√

15
8π

∑
i

[(ri −R)× (ri −R)]2µ

Resolution of identity
over center-of-mass 0s states
〈a|Q(2)|a〉 ∝

∑
r

{ 2 2 0
a a r

}
〈a‖Q2‖r〉〈r‖Q2‖a〉

〈a|Q(3)|a〉 ∝
∑

rs

{ 2 2 2
s a r

}{ 2 2 0
a a s

}
〈a‖Q2‖r〉〈r‖Q2‖s〉〈s‖Q2‖a〉

Need lots of intermediate states MFDn wave function postprocessor (P. Maris & P. J. Fasano)

〈0|Q(2)|0〉 0→ 2→ 0

〈0|Q(3)|0〉 0→ 2→ 2→ 0
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