Eigenvector continuation in nuclear physics

Sebastian König, NC State University

TRIUMF Nuclear Theory Workshop, Vancouver, BC

March 4, 2020

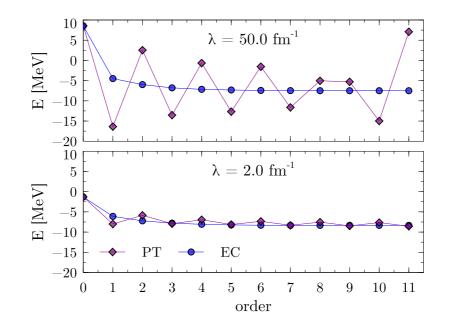
SK, A. Ekström, K. Hebeler, A. Sarkar, D. Lee, A. Schwenk, arXiv:1909.08446

P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, SK, D. Lee, A. Schwenk, V. Somà, A. Tichai, arXiv:1911.12578

Previously on Eigenvector Continuation

Perturbation theory

- span space by the wavefunction corrections $|\psi_1^{(n)}
 angle o x_i^{(n)}$, $n=0,\cdots ext{order}$
- evaluate Hamiltonian between these states
- interpretation: $H = H_{
 m diag} + c\, H_{
 m off-diag}$, EC-extrapolate to c=1

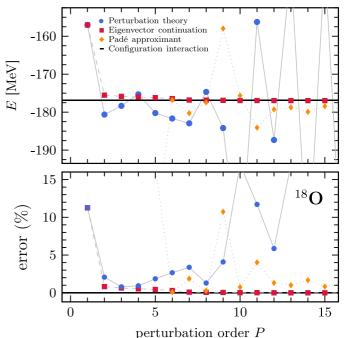


• same input as PT, but now things converge (to the correct result!)

New episode

Many-body perturbation theory

- see talk and poster by M. Frosini!
- consider ¹⁸O in BMBPT
 - PT under constraint
 - here: limited space
 - realistic: $P \leq 3$
- EM500 interaction
 - SRG evolved to $\lambda = 2.0 {
 m fm}^{-1}$
- full CI as reference
- compare EC to simple PT and Padé



 $\lambda = 2.0 \, \mathrm{fm}^{-1}$

perturbation order

- direct perturbation theory clearly diverges
- EC is accurate and reliable, Padé becomes erratic at high orders

P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, SK, D. Lee, A. Schwenk, V. Somà, A. Tichai, arXiv:1911.12578

This talk

EC as efficient emulator

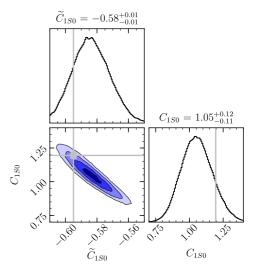
Need for emulators

1. Fitting of LECs to few- and many-body observables

- common practice now to use A>3 to constrain nuclear forces, e.g.:
 - JISP16, NNLO_{sat}, α-α scattering
 Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)
- fitting needs many calculations with different parameters
- Kostas' talk this morning!

2. Propagation of uncertainties

- statistical fitting gives posteriors for LECs
- LEC posteriors propagate to observables Wesolowski et al., JPG **46** 045102 (2019)
- need to sample a large number of calculations
- see Dick's colloquium talk!

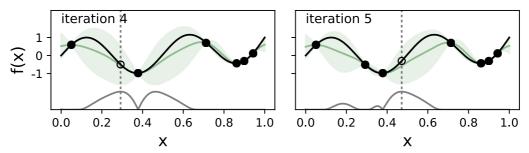


Emulators

Exact calculations can be prohibitively expensive!

Options

- multi-dimensional polynomial interpolation
 - simplest possible choice
 - typically too simple, no way to assess uncertainty
- Gaussian process



► statistical modeling, iteratively improvable

Ekström et al., arXiv:1902.00941

interpolation with inherent uncertainty estimate

Recall

Eigenvector continuation can interpolate and extrapolate!

Hamiltonian parameter spaces

• original EC: single parameter, H = H(c)

• consider a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of *d*-dimensional parameter space
- typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs
- convenient notation: $\vec{c} = \{c_k\}_{k=1}^d$

Frame et al., PRL 121 032501 (2018)

Hamiltonian parameter spaces

• original EC: single parameter, H = H(c)

• consider a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of *d*-dimensional parameter space
- typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs
- convenient notation: $ec{c} = \{c_k\}_{k=1}^d$

Generalized EC

- EC construction is straightforward to generalize to this case:
- simply replace $c_i
 ightarrow ec{c}_i$ in construction
 - $ullet \, \ket{\psi_i} = \ket{\psi(ec{c}_i)} \,$ for $i=1, \cdots N_{ ext{EC}}$
 - $H_{ij} = \langle \psi_i | H(ec{c}_{ ext{target}}) | \psi_j
 angle$, $N_{ij} = \langle \psi_i | \psi_j
 angle$

Note: sum in Eq. (1) can be carried out in small (dimension = $N_{\rm EC}$) space!

Frame et al., PRL 121 032501 (2018)

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space efficiently with training set $S = \{\vec{c}_i\}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - vary d LECs, fix the rest at NNLO_{sat} point

Ekström et al., PRC 91 051301 (2015)

Interpolation and extrapolation

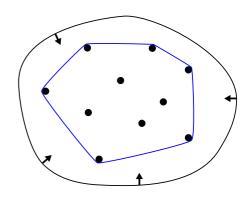
Hypercubic sampling

- want to cover parameter space efficiently with training set $S = \{ \vec{c}_i \}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - vary d LECs, fix the rest at NNLO_{sat} point

Ekström et al., PRC 91 051301 (2015)

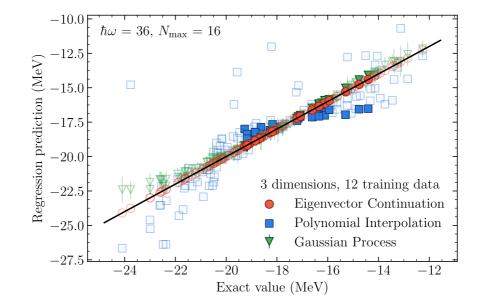
Convex combinations

- distinguish interpolation and extrapolation target points
- interpolation region is convex hull of the $\{\vec{c}_i\}$
 - + $\operatorname{conv}(S) = \sum_i lpha_i ec{c}_i$ with $lpha_i \geq 0$ and $\sum_i lpha_i = 1$
- extrapolation for $ec{c}_{ ext{target}}
 ot \in \operatorname{conv}(S)$
- EC can handle both!

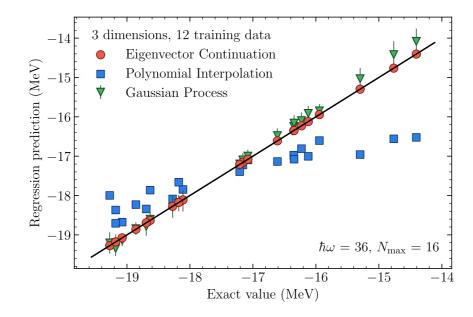


Pbroks13, Wikimedia Commons

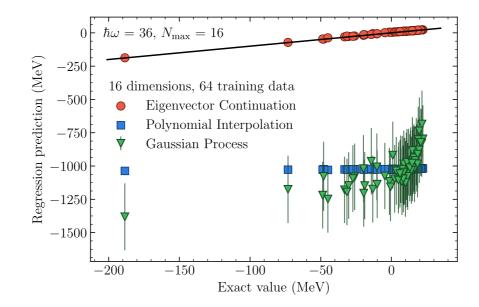
- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets



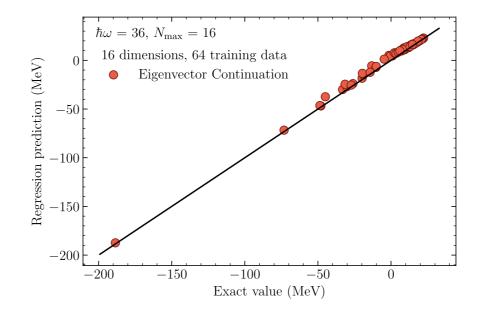
- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets



- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets



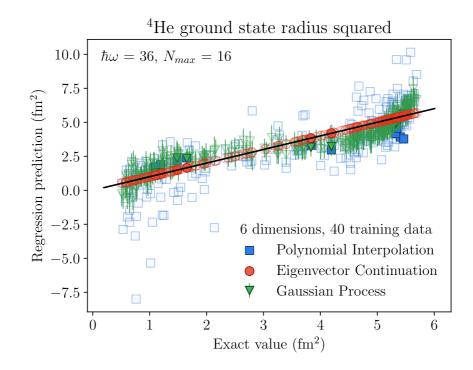
- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets



Performance comparison: radius

Operator evaluation

- generalized eigenvalue problem
- EC gives not only energy, but also a continued wavefunction
- straightforward (and inexpensive) to evaluate arbitrary operators



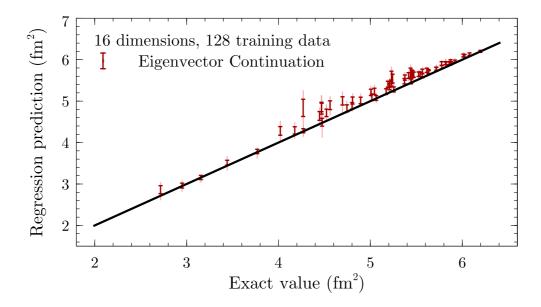
EC uncertainty estimate

- EC is a variational method
 - projection of Hamiltonian onto a subspace
 - ► dimension of this subspace determines the accuracy
 - ► rate of convergence currently being analyzed

D. Lee + A. Sarkar, work in progress

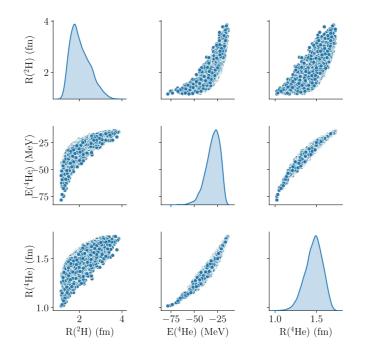
Bootstrap approach

• leave out sets of basis vectors, take mean and standard deviation



Application: correlation analysis

- consider 10^4 LEC samples 10% around $NNLO_{\rm sat}$ point
- known energy-radius correlation well reflected
- ^{2}H radius only gives lower bound for ^{4}He radius
- this analysis would already be very expensive without EC!



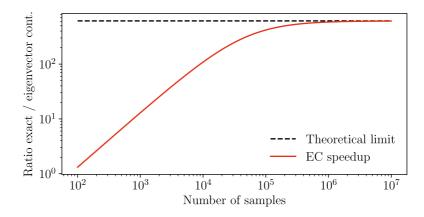
see talk by Andreas for ¹⁶O application!

Computational cost

- setup of EC subspace basis
 - combination of Hamiltonian for given \vec{c}_i , Lanczos diagonalization
 - ullet total cost $=M^2 imes (2n+N_{
 m mv})$ flops
- calculation of norm matrix: 2n²M flops
- reduction of Hamiltonian parts: $(d+1) \times (2nM^2 + 2n^2M)$ flops
- cost per emulated sample point
 - combination of Hamiltonian parts in small space: $2dn^2$ flops
 - ▶ orthogonalization + diagonalization: $26n^3/3 + \mathcal{O}(n^2)$ flops

 $M = M(N_{\text{max}})$: model-space dim., n: training data, N: samples, N_{mv} : matrix-vector prod. (Lanczos)

- example for $N_{
m max}=16$, d=16 , $N_{
m EC}=64$



Summary and outlook

Eigenvector continuation as efficient emulator

- straightforward setup, reduction to small vector space
- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training set
- provides access to multiple observables
- variational method, upper bound for energies
- provides uncertainty estimates via bootstrap approach

Summary and outlook

Eigenvector continuation as efficient emulator

- straightforward setup, reduction to small vector space
- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training set
- provides access to multiple observables
- variational method, upper bound for energies
- provides uncertainty estimates via bootstrap approach

Future directions

- extrapolate spectra, not just single states
- larger systems, other methods
 - ► see following talk by A. Ekström
- application for large-scale uncertainty quantification

Thanks...

...to my collaborators:

- A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)
- A. Ekström (Chalmers U.)
- D. Lee, A. Sarkar (Michigan State U.)
- T. Duguet, V. Somà, M. Frosini (CEA Saclay)
- P. Demol (KU Leuven)

... for funding and support:

...and to you, for your attention!