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Previously on Eigenvector Continuation

p. 2



Perturbation theory
span space by the wavefunction corrections , 

evaluate Hamiltonian between these states

interpretation: , EC-extrapolate to 

same input as PT, but now things converge (to the correct result!)

| ⟩ →ψ
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x
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n= 0, ⋅ ⋅ order

H = + cH

diag

H
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P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, SK, D. Lee, A. Schwenk, V. Somà, A. Tichai, arXiv:1911.12578

New episode
Many-body perturbation theory

see talk and poster by M. Frosini!

consider 

18

O in BMBPT

EM500 interaction

full CI as reference

compare EC to simple PT and Padé

 

direct perturbation theory clearly diverges

EC is accurate and reliable, Padé becomes erratic at high orders

PT under constraint

► 

here: limited space

► 

realistic: 

► 

P ≤ 3

SRG evolved to 

► 

λ = 2.0fm

−1

p. 4



This talk

EC as efficient emulator
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Wesolowski et al., JPG 46 045102 (2019)

statistical fitting gives posteriors for LECs

LEC posteriors propagate to observables

need to sample a large number of calculations

see Dick's colloquium talk!

Need for emulators
1. Fitting of LECs to few- and many-body observables

common practice now to use  to constrain nuclear forces, e.g.:

fitting needs many calculations with different parameters

Kostas' talk this morning!  

2. Propagation of uncertainties

A> 3

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

JISP16, NNLO

sat

, -  scattering

► 

α α
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Ekström et al., arXiv:1902.00941

Emulators

Exact calculations can be prohibitively expensive!

Options

multi-dimensional polynomial interpolation

Gaussian process

simplest possible choice

► 

typically too simple, no way to assess uncertainty

► 

statistical modeling, iteratively improvable

► 

interpolation with inherent uncertainty estimate

► 
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Recall

Eigenvector continuation can interpolate and extrapolate!
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Frame et al., PRL 121 032501 (2018)

Hamiltonian parameter spaces
original EC: single parameter, 

consider a Hamiltonian depending on several parameters:

in particular,  can be a chiral potential with LECs 

Hamiltonian is element of -dimensional parameter space

typical for  calculation: 14 two-body LECs + 2 three-body LECs

convenient notation: 

H =H(c)

H = + V = +H

0

H

0

∑

k=1

d

c

k

V

k

(1)

V c

k

d

O( )Q

3

= {c

⃗ 

c

k

}

d

k=1
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Hamiltonian parameter spaces
original EC: single parameter, 

consider a Hamiltonian depending on several parameters:

in particular,  can be a chiral potential with LECs 

Hamiltonian is element of -dimensional parameter space

typical for  calculation: 14 two-body LECs + 2 three-body LECs

convenient notation: 

Generalized EC

EC construction is straightforward to generalize to this case:

simply replace  in construction

Note: sum in Eq. (1) can be carried out in small (dimension = ) space!
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Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space efficiently with training set 

Latin Hypercube Sampling can generate near random sample

for examples that follow:

S = { }c

⃗ 

i

sample each component 

► 

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015)

vary  LECs, fix the rest at NNLO

sat

 point

► 

d
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Pbroks13, Wikimedia Commons                    

Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space efficiently with training set 

Latin Hypercube Sampling can generate near random sample

for examples that follow:

Convex combinations

distinguish interpolation and extrapolation target points

interpolation region is convex hull of the 

extrapolation for 

EC can handle both!

 

 

S = { }c

⃗ 

i

sample each component 

► 

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015)

vary  LECs, fix the rest at NNLO

sat

 point

► 

d

{ }c

⃗ 

i

 with  and 

► 

conv(S) =∑

i

α

i

c

⃗ 

i

≥ 0α

i

= 1∑

i

α

i

∉ conv(S)c

⃗ 

target

p. 10



Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energy
Cross validation

compare emulation prediction agains exact result for set 

underlying calculation: Jacobi NCSM

observable: 

4

He ground-state energy

transparent symbols indicate extrapolation targets

{c

⃗ 

target,j

}

N

j=1
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Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energy
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Performance comparison: radius
Operator evaluation

generalized eigenvalue problem

EC gives not only energy, but also a continued wavefunction

straightforward (and inexpensive) to evaluate arbitrary operators
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EC uncertainty estimate
EC is a variational method

Bootstrap approach

leave out sets of basis vectors, take mean and standard deviation

projection of Hamiltonian onto a subspace

► 

dimension of this subspace determines the accuracy

► 

D. Lee + A. Sarkar, work in progress

rate of convergence currently being analyzed

► 
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Application: correlation analysis
consider  LEC samples 10% around  point

known energy-radius correlation well reflected

2

H radius only gives lower bound for 

4

He radius

this analysis would already be very expensive without EC!

see talk by Andreas for 

16

O application!

10

4

NNLO

sat
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Computational cost
setup of EC subspace basis

calculation of norm matrix:  flops

reduction of Hamiltonian parts:  flops

cost per emulated sample point

: model-space dim., : training data, : samples, : matrix-vector prod. (Lanczos)

example for , , 

combination of Hamiltonian for given , Lanczos diagonalization

► 

c

⃗ 

i

total cost =  flops

► 

× (2n+ )M

2

N

mv

2 Mn

2

(d+ 1)× (2n + 2 M)M

2

n

2

combination of Hamiltonian parts in small space:  flops

► 

2dn

2

orthogonalization + diagonalization:  flops

► 

26 /3+O( )n

3

n

2

M =M( )N

max

n N N

mv

= 16N

max

d = 16 = 64N

EC
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Summary and outlook
Eigenvector continuation as efficient emulator

straightforward setup, reduction to small vector space

highly competitive, accurate and efficient

can both interpolate and extrapolate from training set

provides access to multiple observables

variational method, upper bound for energies

provides uncertainty estimates via bootstrap approach
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Summary and outlook
Eigenvector continuation as efficient emulator

straightforward setup, reduction to small vector space

highly competitive, accurate and efficient

can both interpolate and extrapolate from training set

provides access to multiple observables

variational method, upper bound for energies

provides uncertainty estimates via bootstrap approach

Future directions

extrapolate spectra, not just single states

larger systems, other methods

application for large-scale uncertainty quantification

see following talk by A. Ekström

► 
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Thanks...
...to my collaborators:

A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)

A. Ekström (Chalmers U.)

D. Lee, A. Sarkar (Michigan State U.)

T. Duguet, V. Somà, M. Frosini (CEA Saclay)

P. Demol (KU Leuven)

...for funding and support:

  

...and to you, for your attention!
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