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Cut my force into pieces...

Decompositions and factorizations of nuclear forces
m provide deeper insights into inner workings
m can be exploited to speed up computations
B give access to optimized operator basis?

Various techniques:
m Singular-Value Decomposition
m Tensor factorizations (CPD, THC, ...)
m Orthogonal Projections
...

m Decompose 3N forces to learn about the EM1.8/2.0
interaction.

m Implicit tensor factorizations as computational tool.
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What’s the magic in the magic interaction?

The ”magic" EM1.8/2.0 interaction (teveier, sogner, rumstani et al. PRC 83, 031301(R) (2011)]
m Predicts ground-state energies throughout nuclear chart, even

208
fOI’ Pb [Simonis, Stroberg, Hebeler et al. PRC 96, 014303 (2017)]
[Stroberg, priv. comm. (2019)]

m Construction:

m NN-only SRG evolution of 2N force (Entem & Machleidt @ N3LO).
m Fit of ¢p, cg to triton g.s. and 4He radius using unevolved 3N

interaction @ N2LO.
m Assumption: induced 3N terms can be absorbed into D and E

contact terms.
Never tested!

How?
Evolve EM2.0/2.0 and project evolved 3N onto N2LO topologies.
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Projection of three-body forces

m Chiral 3N topologies form basis of 3N operator subspace.

m Matrix representations in Jacobi-HO — basis {C;} of matrix
subspace.

m Introduce Frobenius inner product (U, V) = ZJHT tr(UanTanT).
= Basis nonorthogonal, metric tensor Gj; = (C;, C;).

m To project force V, compute y = ({C1, V), ..., {Cn, V))T and solve
Gec=y

Vector ¢ contains LECs of the projected V, projection solves
least-squares problem of matrix elements
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Structure of N2LO topologies
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Structure of N2LO topologies
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Evolving from 2.0fm™! to 1.8 fm™

1

—325} : ' " 404
—330+ equ=10_
S 335t IMSRG(2) |
—340r Expt. ]
T E—1m0 2.0/2.0>1.8 1.82.0
m Use SRG in three-body space
dH(a) du(a)
o = [N(H(@), H(@) o =—U(@)n(H(@)

a =A% SRG flow parameter

m SRG equations autonomous: start from EM2.0/2.0 and evolve

to Aa=1.8"4—2.0"4.
m 3N also evolves from A =2.0fm™1

= Look at induced 3N from NN only: apply U(a) to V.
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Structure of induced 3N terms
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Structure of induced 3N terms
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Structure of induced 3N terms
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Structure of induced 3N terms
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Structure of induced 3N terms
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Projection of the evolved interaction

LEC 2.0/2.0 2.0/2.0—-1.8 1.8/2.0
Full Cp, CE

ci —-0.81 —-0.673 -0.81 —-0.81
c3 —3.20 —2.928 -3.20 —3.20
Ca 5.40 5.139 5.40 5.40
Cp 1.264 1.381 1.446 1.271
ce 0120 -0.133 -0.115 -0.131

m Full: ¢/'s get ~ 10% correction, 2PE suppressed, contacts
enhanced.

B Cp, Ce: D term enhanced, E term suppressed.
m Values quite different from 1.8/2.0.
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Conclusions?

m Induced 3N vastly different from N2LO topologies. Cannot
absorb into LECs.

m Magic in the EM1.8/2.0 is an accidential cancellation: Suppose
chiral EFT eventually converges, then, at A = 1.8fm™1,

Vy = V1.8 +(V3,5rR6 — V3,60E) + Vo N4Lo+ + V3 N30+ + VA + -+

Since (Tint + V1.8)g.s. ® (Tint + Vx)g.s.»

(V3,5DE)g,s, ~ (V3,SRG + V2,N4LO+ + V3,N3LO+ +Va+-- ’)g.s. .

m Induced terms and higher orders cancel in g.s. expectation
value, except for contact-like part.

m EM1.8/2.0: Contacts have right strength to fit few-body
observables and provide correct shift in E/A once saturated.
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Factorizations and random
embeddings




Factorizing a Hamiltonian

m Nuclear Hamiltonian is superposition of few operators.

m Some operators are simple (contacts, kinetic energy), some
more complicated

m Can we divide operators into simpler objects?
= Lower-scaling many-body methods.
= Inclusion of explicit 3N/4N terms.

We can try tensor factorizations!
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Canonical Polyadic Decomposition

Simple factorization: Write Hamiltonian as

Habcd — Z )\aA(l)A(Z)A(3)A(4)

b,a" 'c,a

Changes scaling of many-body methods, e.g.,

Z HabcdHabcd = Z A )\ﬁZAa aAglﬁ ZA A(4

abcd a,Bf=1

Complexity O(N%) — O(4Nr?) e e s e 56, 631520 (2010
How to compute? Alternating Least-Squares!

Fix A(@),...,A(4), Build LS problem for A(D) (O(N*r)).

Solve LS problem for A(1).

Repeat for A(2),... A(4),

B Repeat 1 - 3 until convergence (100’s of iterations)
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The Johnson-Lindenstrauss lemma

m Computing CPD is expensive.

m Use existence of low-rank CPD without actually computing it?

— Many-body methods care about inner products, not matrix
elements.

Johnson-Lindenstrauss lemma (paraphrased)

We can find a projection matrix P € R™*N with random elements
that preserves norms of a set of vectors S = {X;} up to some
adjustable error € with high probability if m = mq(€, |S|):

IPXill = (1 + elIXill, leil <€

Using T -V = 1/4(||T + V||2 — ||T — V||?), this translates to preservation
of scalar products.
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Random embeddings

m Existence of CPD: r(3r—1)/2 vectors to preserve in each mode.
m Apply Johnson-Lindenstrauss modewise

[Iwen, Needell, Rebrova, Zare. arXiv:1912.08294]

~ 1 2 3)4(4
Flapys = 3, HabcdPy oPh sPorPys
abcd

m Turns N* matrix elements into m*. Compression factor

c=m/N.
m Savings depend on m required for given precision €.
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Results: Many-Body Perturbation Theory

Relative error in E® for eMazx = 4 (1000 trials).
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[Zare, RW, et al. in prep.]

160
hQ =24 MeV
A3y =400 MeV/c
asrg = 0.08 fm?

Entem & Machleidt +
local 3NF

EQ?) _EQ@

(2) =
AEY) = =6)

averaged over 1000 trials

¢ = 0.25 sufficient for 1%
accuracy

Computational savings
1/4* =4 x 1073
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Conclusions

Tensor Factorizations

m Factorizations can yield low-scaling many-body methods.
m Drawback: initial cost.

JL Embeddings

m Use existence of factorization implicitly.
m Computationally cheap.
m Reduce index length by factor c = m/N.

m Drawback: scaling does not change
(In fact, c becomes smaller with increasing model space)

Future: combine both to reduce factorization cost.
Gain improved scaling and shorter indices.
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...this was my workshop talk
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= Thank you for your attention!
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